Geometry Gym
HomeYouTube ChannelForumDownloads
  • Geometry Gym Technical
  • Getting Started
    • Installation
      • Common Installation Issues
      • Updates
    • Licensing
      • License Info and Issues
    • Asking for Help
  • Learn
    • Example Files
    • Tutorials
      • Automating Structural Analysis and Design with SPACEGASS
      • Integrating Karamba3d with Geometry Gym
      • Quick Start Guide - Parametric Structural Analysis (SAP2000)
      • IFC to Structural Analysis
      • Intro to Rhino.Inside Revit
    • "How-to" Guides
      • Structural Analysis HTGs
        • Convert a Structural Analysis Model through IFC
        • Transfer IFC to Structural Analysis
      • BIM How to Guides
        • Weekly Batch Convert
  • Rhino-Grasshopper
    • Introduction
      • Interface Set-up
      • Model Set-up
    • BullAnt
      • Introduction
      • Structure
        • Profiles
      • Geometry Creation Tools
        • Geometric Pattern Tools
        • Model Structure
      • Form Finding
      • Geometry Utilities
      • List and Tree Utilities
      • BullAnt Examples
    • Structural Analysis
      • Introduction
      • Structural Analysis plug-in General
        • Tools for Rhino
          • Import/Export Tools
          • Conversion Tools
          • General Tools
        • GH User Interface
        • Structural Model
          • Structural Model Basics
          • Bake Model (Export)
          • Import Structural Analysis Model
          • Convert Model
            • Structural Analysis Detection from BIM
        • Model Attributes
        • Materials
        • Section Properties
        • Elements
          • Nodes
          • 1D Elements (Curve)
          • 2D Elements (Area)
          • 3D Elements (Solid)
          • Groups/Lists
        • Loads
          • Loadings
          • Load Cases
          • Load Combinations
        • Automating Analysis and Result Queries
          • Solver
          • Analysis Result Queries
          • Query Existing Analysis Model
        • Design
      • GSA | ggRhinoGSA
        • GSA Specifics
        • GSA Examples
      • Etabs | ggRhinoEtabs
        • Etabs Specifics
        • Etabs Examples
      • LUSAS | ggRhinoLUSAS
        • LUSAS Specifics
        • LUSAS Examples
      • ROBOT | ggRhinoRobot
        • Robot Specifics
        • Robot Examples
      • SAP2000 | ggRhinoSAP
        • SAP2000 Specifics
        • SAP2000 Examples
      • SPACE GASS | ggRhinoSpaceGass
        • SPACE GASS Specifics
        • SPACE GASS Examples
      • Strand7 | ggRhinoStrand7
        • Strand 7 Specfics
        • Strand7 Examples
      • Karamba3d
        • Karamba3d Examples
      • Create with Code
    • IFC | ggRhinoIFC
      • Introduction
        • Exporting IFC from External App
      • IFC for Rhino
        • Rhino IFC Import
        • Rhino IFC Export
          • Using Rhino IFC Layers
          • Rhino to IFC Example
        • Conversion Tools
        • Rhino IFC Tree Viewer
        • Rhino IFC Tools
        • IFC File Tools
      • IFC Grasshopper
        • User Interface
        • IFC Database Model
          • IFC Database Basics
          • Bake (Export) IFC
        • Create IFC
          • Model Definition
          • Project Libraries
          • Properties and Property Sets
          • Materials
          • Material Profiles
          • Geometric Representations
            • Geometric Operations
          • Element Types and Instances
            • Generic Elements
            • Standard Elements
            • Services Elements
            • Structural Elements
            • Infrastructure Elements
        • Working with IFC
          • Import/Export
          • GUID tools
          • Extract
          • Quantities
          • Assign Relationships
          • Assign Resources
          • Element Placement and Mapping
          • Element Assemblies
        • Create via Code
      • IFC Examples
    • Revit | ggRhinoIFC
      • Introduction
      • Working with ggRVT
        • Import/Export
        • Elements
          • Element Types and Instances
          • Placement
          • Attributes
        • Model Definition
        • Materials and Profiles
        • Families
        • Analytical
        • Documentation
      • Rhino Inside Revit
      • Revit Examples
    • Tekla | ggRhinoTekla
      • Introduction
      • Tekla Examples
  • Revit
    • Introduction
    • RevitIFC
      • IFC Import
        • IFC Import Options
        • IFC Category Mapping
      • IFC Export
        • IFC Enhanced Export
        • IFC Enhanced Export Linked Models
        • IFC Revision Export
      • IFC Tools for Revit
      • IFC Tools
    • Revit to Structural Analysis
  • OTHER
    • Navisworks | ggNavisIFC
      • Import 4D Information to Navisworks
      • Navisworks IFC Export
    • Advance Steel | ggAdvanceSteelIFC
    • Excel | ggExcelIFC
    • IFC Tree Viewer
  • Need Help?
    • FAQs
    • Ask on the Forum
    • Abbreviations
    • Contributors
  • Changelog
Powered by GitBook
On this page
  • Model Tolerance
  • Model Placement

Was this helpful?

  1. Rhino-Grasshopper
  2. Introduction

Model Set-up

Rhino and Grasshopper model set-up

PreviousInterface Set-upNextBullAnt

Last updated 2 years ago

Was this helpful?

Model Tolerance

Rhino commands (and grasshopper components) and tools work to a tolerance that is specified by the user within each Rhino document, and it's quite important that designers are aware of this and have given thought to the tolerance before they start modelling. Because Rhino is used in so many industries and purposes, the installed defaults should be edited for your purpose. You can save your own defaults by opening a new document in your required units (i.e. metre, or millimetre etc).

The default tolerance is specified in your Rhino Template files but can be edited through Tools > Options menu.

Problems due to a "loose" tolerance can emerge at later stage of project design, particularly when the model is exported and used as an input to other uses such as rapid prototyping, or Finite Element Analysis. It is recommend setting your tolerance as tight as you dare, and relaxing it when necessary if commands such as the boolean operations, intersection, splitting etc are failing.

Please also keep in mind that when exporting files (for example, export to IFC) with the Geometry Gym plug-ins, the active rhino document nominated tolerance will be used to determine the precision of lengths when writing out. If this is less accurate than the import software or project requirements than this can be made more precise by changing the Rhino Tolerance (or precision).

Model Placement

It's common practise in CAD to model construction projects in worldwide position (ie OS coordinate system).

In Rhino, it is strongly recommend to keep your model in space close to the origin by using a local project axes system. You will likely observe display problems if you use a coordinate system with coordinates of a large value such as those typical in OS. This is because Rhino uses numbers of "single" precision for display mesh positions.

You can set up named construction planes (similar to User Coordinate Systems in AutoCAD) that will enable you to interrogate or specify coordinates in your model in large coordinate systems.

For further information on tolerance here is the .

Rhino wiki entry on tolerance
Setting tolerance in Rhino