Geometry Gym
HomeYouTube ChannelForumDownloads
  • Geometry Gym Technical
  • Getting Started
    • Installation
      • Common Installation Issues
      • Updates
    • Licensing
      • License Info and Issues
    • Asking for Help
  • Learn
    • Example Files
    • Tutorials
      • Automating Structural Analysis and Design with SPACEGASS
      • Integrating Karamba3d with Geometry Gym
      • Quick Start Guide - Parametric Structural Analysis (SAP2000)
      • IFC to Structural Analysis
      • Intro to Rhino.Inside Revit
    • "How-to" Guides
      • Structural Analysis HTGs
        • Convert a Structural Analysis Model through IFC
        • Transfer IFC to Structural Analysis
      • BIM How to Guides
        • Weekly Batch Convert
  • Rhino-Grasshopper
    • Introduction
      • Interface Set-up
      • Model Set-up
    • BullAnt
      • Introduction
      • Structure
        • Profiles
      • Geometry Creation Tools
        • Geometric Pattern Tools
        • Model Structure
      • Form Finding
      • Geometry Utilities
      • List and Tree Utilities
      • BullAnt Examples
    • Structural Analysis
      • Introduction
      • Structural Analysis plug-in General
        • Tools for Rhino
          • Import/Export Tools
          • Conversion Tools
          • General Tools
        • GH User Interface
        • Structural Model
          • Structural Model Basics
          • Bake Model (Export)
          • Import Structural Analysis Model
          • Convert Model
            • Structural Analysis Detection from BIM
        • Model Attributes
        • Materials
        • Section Properties
        • Elements
          • Nodes
          • 1D Elements (Curve)
          • 2D Elements (Area)
          • 3D Elements (Solid)
          • Groups/Lists
        • Loads
          • Loadings
          • Load Cases
          • Load Combinations
        • Automating Analysis and Result Queries
          • Solver
          • Analysis Result Queries
          • Query Existing Analysis Model
        • Design
      • GSA | ggRhinoGSA
        • GSA Specifics
        • GSA Examples
      • Etabs | ggRhinoEtabs
        • Etabs Specifics
        • Etabs Examples
      • LUSAS | ggRhinoLUSAS
        • LUSAS Specifics
        • LUSAS Examples
      • ROBOT | ggRhinoRobot
        • Robot Specifics
        • Robot Examples
      • SAP2000 | ggRhinoSAP
        • SAP2000 Specifics
        • SAP2000 Examples
      • SPACE GASS | ggRhinoSpaceGass
        • SPACE GASS Specifics
        • SPACE GASS Examples
      • Strand7 | ggRhinoStrand7
        • Strand 7 Specfics
        • Strand7 Examples
      • Karamba3d
        • Karamba3d Examples
      • Create with Code
    • IFC | ggRhinoIFC
      • Introduction
        • Exporting IFC from External App
      • IFC for Rhino
        • Rhino IFC Import
        • Rhino IFC Export
          • Using Rhino IFC Layers
          • Rhino to IFC Example
        • Conversion Tools
        • Rhino IFC Tree Viewer
        • Rhino IFC Tools
        • IFC File Tools
      • IFC Grasshopper
        • User Interface
        • IFC Database Model
          • IFC Database Basics
          • Bake (Export) IFC
        • Create IFC
          • Model Definition
          • Project Libraries
          • Properties and Property Sets
          • Materials
          • Material Profiles
          • Geometric Representations
            • Geometric Operations
          • Element Types and Instances
            • Generic Elements
            • Standard Elements
            • Services Elements
            • Structural Elements
            • Infrastructure Elements
        • Working with IFC
          • Import/Export
          • GUID tools
          • Extract
          • Quantities
          • Assign Relationships
          • Assign Resources
          • Element Placement and Mapping
          • Element Assemblies
        • Create via Code
      • IFC Examples
    • Revit | ggRhinoIFC
      • Introduction
      • Working with ggRVT
        • Import/Export
        • Elements
          • Element Types and Instances
          • Placement
          • Attributes
        • Model Definition
        • Materials and Profiles
        • Families
        • Analytical
        • Documentation
      • Rhino Inside Revit
      • Revit Examples
    • Tekla | ggRhinoTekla
      • Introduction
      • Tekla Examples
  • Revit
    • Introduction
    • RevitIFC
      • IFC Import
        • IFC Import Options
        • IFC Category Mapping
      • IFC Export
        • IFC Enhanced Export
        • IFC Enhanced Export Linked Models
        • IFC Revision Export
      • IFC Tools for Revit
      • IFC Tools
    • Revit to Structural Analysis
  • OTHER
    • Navisworks | ggNavisIFC
      • Import 4D Information to Navisworks
      • Navisworks IFC Export
    • Advance Steel | ggAdvanceSteelIFC
    • Excel | ggExcelIFC
    • IFC Tree Viewer
  • Need Help?
    • FAQs
    • Ask on the Forum
    • Abbreviations
    • Contributors
  • Changelog
Powered by GitBook
On this page
  • Step 1. Open/Import Existing Model
  • Step 2. Generate Queries
  • Step 3. Decompose

Was this helpful?

  1. Rhino-Grasshopper
  2. Structural Analysis
  3. Structural Analysis plug-in General
  4. Automating Analysis and Result Queries

Query Existing Analysis Model

How to automate the querying of an Existing Structural analysis model.

PreviousAnalysis Result QueriesNextDesign

Last updated 2 years ago

Was this helpful?

The ggQuery component allows you to attach to or use a given existing structural analysis model file to extract results from.

In many cases, you may have developed a structural analysis model directly within a structural analysis program and now want to use Rhino and Grasshopper to perform some calculations based on the analysis results that are trapped inside the structural analysis program.

Unlike the ggSolve Component this will not modify the analysis model in any way nor will it tell the structural analysis program to run any analysis. Therefore, you need to ensure that any load case or combinations that have already been run in the model and that it has then been saved in that state.

The query component will typical take one parameter- The query however it will rely on you using the ggImportModel or ggImportData component to open the model in the first place. The steps below outline the process shown in the image below.

Step 1. Open/Import Existing Model

You can use the ggImportData component to import the structural analysis model into Grasshopper. This allows you to filter and specify elements and load cases/combinations in which you are going to query analysis results for.

It is best that the model is not already open prior to adding this component to the canvas. Once the file path of the analysis model is specified the component will perform the necessary steps in order to open the model.

Step 2. Generate Queries

Queries are generated similar to as if you were going to run through the solver component. Select your query type and the associated elements and for which particular load case.

Follow the steps here for setting up analysis result queries:

Once you have set-up your desired queries, wire these into the queries input of the component.

Note: this will automatically generate the queries from the analysis model on the fly. If you have multiple queries you may want to disable the component to allow you to perform the query in one go.

Step 3. Decompose

Once the query component has run, you should receive the result data items for the queries you provided. Decompose these results to get the associated results for your use in grasshopper.

Import Structural Analysis Model
Analysis Result Queries
Query Component
Extracting model frequency results from an existing model